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Abstract
The clinical application of dynamic ECT reconstruction

algorithms for inconsistentprojection (IP) datahasbeenbeset
with difficulties. Theseinclude poor scalability, numerical
instability of algorithms, problems of non-uniqueness of
solutions, the need to oversimplify tracer kinetics, and
impractical computational burden. We present a stable,
low computational cost reconstruction algorithm which is
able to recover the tracer kinetics of several hundred image
regions at realistic noise levels. Through optimal selection
of a small set of non-negative basis functions to describe
regional time-activity curves(TACs), we areable to solve for
the first-order compartmentalmodel kinetics of eachregion.
A non-uniform resolution pixelization of image space is
employed to obtain highestresolutionin regions of interest.
Thesespatialandtemporal simplifications improve numerical
conditioning, provide robustness againstnoise, and greatly
decreasethe computationalburdenof dynamic reconstruction.
We apply this algorithm to IP phantom data whose source
distribution, kinetics and count statisticsare modeled after a
clinical myocardialSPECTdataset.TACsof phantom regions
arerecoveredto within a meansquareerrorof

���
, anaccuracy

which provessufficient to allow for quantitative detectionof a
myocardialperfusiondefect within healthymyocardialtissue.

I . INTRODUCTION

First-order compartmental models are routinely used to
describepharmacokinetics within biological systems. The
responsesof such modelsare governed by first-order linear
differential equations, usually driven by a single forcing
function corresponding to the input of a particular substance
into the compartmentalsystem. As such, the responsestake
the form of the convolution of the sums of decaying real
exponential terms with this input function. Exponential
spectralanalysisinvolvesthe quantification of the coefficients
of theseexponentialterms(modes)within the compartmental
model response, in terms of a preselectedspectrum of
exponential functions [1]. This approach obviates the need
for iterative estimation of the non-linear parameters (rate
constants)of a compartmental model, allowing convenient
solutionvia linear methods. Unfortunately, owing to the fact
that sums of decaying real exponentials are not uniquely
parameterized in the presence of noise, solutions in terms
of spectralcoefficients may not be unique [2, 3]. A strong
dependence may consequentlyexist betweenthe particular
solutionobtainedandthenoisepresentwithin thedata.

We have previously shown how unique representations
of compartmentalmodel responsesmay be obtained through
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the representation of an exponential spectralbasisusing an
orthogonalapproximating basis[4, 5]. This technique greatly
reduces problemdimensionand ensuresthat any solution in
termsof thecoefficients of this basiswill beunique. However,
this schemehastwo disadvantages:

1. The new basis functions possessnegative values, and
in general require negative coefficients in order to
approximateanexponentialspectralrange.

2. The coefficients obtained do not have obvious
physiological significance.

In this paper, we addressthe former issueby transforming
the orthogonalbasisset so that a broadexponential spectrum
may be approximated in termsof non-negative basis(NNB)
functions, linearly combined using non-negative coefficients
(NNC).

We cannotaddressthesecondissueusinga change of basis
functions,sincesucha changewill almostinvariably leadto a
representationin whichthekinetic parameterswill bedevoid of
physiologicalmeaning. However, thisconsiderationis arguably
spurious if the time-activity curves (TACs) for all image
regionsareaccuratelyrecovered, sinceany modelmaythenbe
fit to these. Our primary goal in this work is to demonstrate
how the NNB-NNC representation, used in conjunction
with a non-uniform resolutionreconstructiongrid, leadsto a
tremendousreduction in thedimensionof theproblemof direct
dynamic emissioncomputedtomography (ECT) reconstruction
from inconsistentprojections. By minimizing the number of
parameters,this approachtendsto improve problem condition,
leadingto anoverdetermineddynamic imaging systemmatrix.
This in turn improvesrobustnessagainst noisewhichfacilitates
therecovery of TACsto anaccuracy sufficient to allow clinical
diagnosisbasedonresultsobtained.

I I . PROBLEM FORMULATION

A. Kineticmodel
Sinceoneof themostcompelling applicationsof algorithms

for direct reconstructionfrom inconsistentprojections(DRIP)
lies in clinical myocardial ECT, we choose to addressthe
dynamics of the first-order singlecompartmentalmodel. This
model is appropriate for tracerssuch as ��� m Tc-teboroxime,
whoseuptake and washoutfrom the myocardium have been
shown to correlatewith blood flow and consequentlymay
serve as a good indicator of myocardial defectsassociated
with ischemiaand infarctedtissue[6]. This kinetic model is
representedschematicallyin Figure1.

According to thismodel, thetime-activity within region � is
givenby: ���
	���
���� ���� 	���
���������� "!�# (1)



where � 	���
 is the measured blood input function, and the
‘
�
’ operator denotesconvolution. The constants

� � and��$
represent the wash-in and wash-out coefficients of the

compartment, respectively. We assumethroughout that the
blood input function has been obtained via arterial blood
sampling. In caseswherethe projection dataare reasonably
consistent, the input function may be estimatedfrom the
activity within theleft ventricular bloodpool [7].

B. Geometricmodel
Without loss of generality, for purposesof illustration we

refer to the 2D non-uniform resolutionpixel grid shown in
Figure2.

The TAC
� �&%('()

is assignedto the � th region * � 	,+-
 # � �
. #0/�#2131214#25 . In general, we requirethat the underlying source
distribution * 	6+-
 becompletelysegmentedinto regions in this
way.

C. Reconstructionproblem
Givena setof projectionmeasurements78 	:9;	���
<
 acquired at

times
�=�>��? # ' �>@ # . #2131214#�ACB . # at angles

9 %D'D)
, our objective

is to recover the time activity curves
� ��%('4)

for all 5 regions.
This amounts to reconstructinga dynamic imagesequence of
length A .

I I I . ALGORITHM FORMULATION

This algorithm representsan extensionof the convolved-
orthogonalbasisreconstructionalgorithm (COBRA) described
in [5]. Theformulation is very similar to COBRA, except that
we now introduce a new basisand non-negativity constraints
on the reconstructedTACs. We alsogeneralize the algorithm
to accommodate irregular time sampling of projections.
Owing to the small number ( 5FE . @

) of regions presentin
the segmentation to which COBRA wasappliedin [5], these
constraints proved unnecessary. However, their imposition
is essential to ensure that physically realistic TACs are
recoveredin thesolutionof problemsof larger dimension. For
completeness,a brief overview of the COBRA framework is
given, before the extensions are presented. In addition, the
entireprocedurefor the generation of the TAC approximating
basisis illustratedschematicallyin Figure3.

� 	���

� �

��$

G 	���


Figure 1: Compartmental model for H:H,I Tc-teboroxime in the
myocardium. Here, JLK�M�N representsthe tracer activity within the
myocardium, while othersymbolsaredefinedwithin thetext.
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Figure2: Non-uniformresolutionpixel grid. Sucha grid is proposed
in orderto offer increasedresolutionin areasof clinical interest,while
reducingthe overall problemdimension. Although the pixels of the
highestresolutionregion arenot labeledin thefigure,region numbers
aresimilarly assignedto thereto.

A. Spectral representationof single compartment
modelkinetics

Our kinetic model formulation begins by generalizing (1)
to the casewherethe TAC of eachregion may be composed
of linear combinationsof the responsesof several underlying
compartments. This is often useful for modeling tissue
heterogeneity, partialvolumeandspillover effects[8]. We thus
have: � � 	���
O� PQ

PRTS �
� PR

�
� � 	���
��-�T�U��VW !�# (2)

where XY is thenumber of exponentialmodes(compartments)
from which theTACsmayderive.

Sincethealgorithmwill bebasedin discretetime,wesample
the imagingtime interval at A points

�Z�[�\? # ��? ] �_^ ��? # ' �@ # . #3121313#�A`B .
giving:

��� %4'a) �b���
	���
dc � �? S&e
f 	�� B � ? 
 # (3)

where
f 	���


is theDiracdeltadistribution.

In (2) we seethat eachTAC depends non-linearly on the
parameter

�\$
. As the projection measurements constitute

sumsof TAC values, they are composedof weighted sums
of convolved exponential functions. The determination of
the values of these parameters constitutes the extremely
ill-conditioned problem of resolving the components of
exponentialsums[2, 3]. We wish to linearizetheproblemand
improve its condition. To do this, we employ the exponential
spectralmethod of Cunningham et al. and define a set of
sampled exponential functions which span the range of
physiologicallyfeasiblecompartmental modesexpectedwithin
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Figure 3: Schematicdiagram illustrating the steps involved in
generatingthe oblique-rotatedconvolved orthogonal basis. The
rightmostcolumnreferencestherelevantequations in thetext.

theimageddistribution [1]:

ò PR
%n'D) � � �U��VW ?�ó ! # ' � @ # . #3121314# XA B . # (4)

Xô
� . #3121314# XY B . 1 (5)

It is important that õ
�

be small enough to ensureadequate
sampling of the spectral functions. The number of basis
samples XA must be greaterthan or equal to the number of
projection samplingtime points A , sincethe latterwill always
be a subsetof the former. While the latter may be irregularly
sampled,the former must be sampledregularly, for reasons
thatwill becomeclearshortly.

Typically, we desiretheability to modelthepresenceof the
the blood input function within the imageddistribution. This
correspondswithin thespectralcontext to convolution with an
exponentialbasisfunction (4) having

� PR$ �÷ö
. This function

is equivalent to theDiracdeltadistribution. Thespectralset(4)

is consequentlyaugmentedby:

ò PQ
%D'D) � f %D'D) # (6)

where
f %D'D)

is theunit sample.

We thenform the
	 XAùø XY 


matrix ú whose Xô th column
is

ò PR
%n'�)

asdefinedin (4). Convolving eachcolumnof ú with
thebloodinput function � %n'D) � � 	 ' õ ��
 # ' �>@ # . #312131(# XA`B .

we
form: ûzüþý ÿxü � ÿ�ü$������ ÿ�ü

PQ (7)

where we have retained only the first XA elements of the
convolution,sothattherow dimension of

û ü
is XA .

In realistic imaging scenarios,residual activity may be
presentin the imaged distribution, perhaps from a previous
tracerinjection. In orderthat suchan offsetmay be modeled,
we augment

û ü
with acolumn:ÿ ü

PQ
] � � � Pc (8)

wheretheright-handsideis a column vectorof XA ones.

B. Orthogonalizationof spectral basis
We now invoke thesingularvaluedecomposition(SVD) to

find orthogonal basisvectors for therange of
û ü

. Thesearethe
left singular(column)vectors � PR of theSVD of

û ü
:

û ü � X���
	�� # X� � � � � $ ����� � PQ
] � (9)

where
	

is the matrix of right singularvectors, and
�

is the
diagonal matrix of singularvalues. We associatethe discrete
time index

'
with eachrow of X� . Depending on thedegreeof

accuracy required in the sampledrepresentationof the
���
	���


,
we utilize only thefirst

Y�
 XY of X� anddefine:� ý � � � $ ����� � Q 1 (10)

Typically,
Y ���

to � is sufficient for myocardial imaging
applications.Figure4 shows thecolumns of

�
when

Y � � .

Eachcolumn of
�

representsa basisfunction, andwe have
plottedthesefunctionsin Figure4.

We referto the � R asconvolved-orthogonalbasisfunctions
(COBs).TheCOBwill, in general,possessnegativeexcursions.
SinceTAC valuesarealwayspositive, their usein large DRIP
problemsrequirestheimplementationof theconstraints:�� �
%('() � Q

R�S � � R ��� R %D'D) ^ @ # '����
(11)

where� R � is the coefficient of the ô th basisfunction for the� th region. Thevalue
� R %D'D) correspondsto the

	 ' # ô 

th element

of
�

. Werecognizethattheconstraintsneedonlybeenforcedat
theextremaof thebasisfunctions,aswell asat thefirst andlast
samplingpoints. Imposition of theseconstraintsis sufficient
to preclude negative excursions. Equivalently, the setof time
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Figure4: Many of theelementsof � (samplesof theorthogonal basis
functions)arenegative, asis obvious from theseplotsof thecolumns
of � .

indicesat whichconstraintsareenforcedis givenby:� ý '���� R %n' � . )"!#� R %D'D) # � R %D'D) E � R %D' B . ) #
' � . #0/�#3131214#2A B_/%$�&� R %D''� . ) E � R %D'D) # � R %D'D)"!(� R %D' B . ) #' � . #0/�#3131214#2A B_/%$� ' � @ # ' � A`B . 1

The left-hand sideof (11) givesthe the TAC valuefor the� th region at discretetime index
'
. The value ) �+* � * 
 A

corresponds to the number of time indices at which the
constraints are imposed. We define the total number of
constraints , ý ) 5 .

Theconstraints(11) mayberewrittenasthematrixproduct:- �/.10
(12)

where
. �3254'687 6

is ablockdiagonal matrix.

We desire that
�� �
%('()

be non-negative for all � and'9�:�
. However, this leadsto a very large matrix

.
, whose

dimension scalesas the square of the number of regions.
This approach consequently becomes impractical for higher
resolution reconstruction problems, where the number of
regions is large, unlesssparsestorageis usedfor

.
. Even

under suchcircumstances,the impositionof ) 5 constraintsis
computationallyburdensome.

C. Constructionof non-negativebasisthroughaffine
transformation

The problem describedabove would be greatly simplified
if a non-negative basis,non-negative coefficient representation
was available. To this end we begin by expressing the
convolved original spectrum

û ü
asan approximation in terms

of theorthogonalbasis: û ü �;� 0=< # (13)

where
0=< �>2 Q 7@? PQ ] �BA is amatrixof known coefficients.

Employing theobliquerotationmethodproposedby Siteket
al. in [9], weintroduceaninvertiblematrix C within theidentityC � � C , giving: ûzü � � C � � C 0D<

(14)� � C � � C 0=<
(15)� 7û�	 C 
E0=Fo	 C 
 1 (16)

To yield the desiredbasis,the elements of 7û 	 C 

and

0 F 	 C 

mustobey:

XG ? R ^ @ # ' � . #0/�#213121(# XAd# ô � . #0/�#312131(# Y� R PRF ^ @ # ô � . #</�#3121313# Y # Xô
� @ # . #312131(# XY � .

(17)
respectively, where XG ? R is the (

' # ô )th element of 7û 	 C 

and� R PRF , the

	 ô # Xô


th elementof

08Fo	 C 

.

In orderto find 7û 	 C 

thusspecified,we formulatethecost

function:

H 	 C 
 � IKJML Pc? S �
Q
R�S �

	
XG ? R 
 $ 1ON 	 XG ? R E @�
 #

Q
RTS �

PQ
] �
PR�S �

	 � R PRF 
 $ 1PN 	 � R PRF E @�

(18)

where N 	0
 is an indicator function assumingthe value unity
when its argument is true. Clearly,

H 	 C 

is discontinuous,

and cannot be minimized using conventional optimization
algorithms. It is possibleto replaceN 	<
 with anapproximating
continuous function, such as a logistic function. However,
sincethereexist many solutionswhich satisfy (17), sampling
algorithms which do not require cost function continuity can
easilyfind asolutionto (18).WeemployedAdaptiveSimulated
Annealing, using default algorithm parameters[10], to yield
thebasisshown in Figure5. Here,ASA terminatedwhenF(R)
waslessthan

@ 1 � ø . @ �'Q
, a tolerancewhich proved sufficient

for this application andcorrespondedto a maximum negative
excursionof any basisfunction of 2.7% of themaximumvalue
of the function. The small negative elementsof 7û were set
to zero to prevent any negative valuesoccurring among the
reconstructedTAC samples.The ASA algorithm executedin
503minutesonaPentiumIII 850MHz processor.

D. Evaluating the accuracy of TACs approximated
usingnon-negativebasis

It is important to evaluatethequality of the approximation
obtained usingthe oblique-rotated convolved-orthogonal basis
(ORCOB).To this end,we definethemetric:

Y
pow R %D'D) # XR %D'D) ý c � �? S
e R %D'D) B XR %D'D)

$

c � �? S
e R %n'�) $ ø . @o@
(19)

where R %D'D) and XR %D'D) are the true andestimatedfunctions to be
compared,respectively.
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Figure5: Oblique-rotatedversionsof the orthogonal basisfunctions
which appear in Figure4.

Let us take for example the basisset shown in Figure 5.
This ORCOB wasderived from the COB functionsshown in
Figure4, which werein turn derivedfrom an

	 XY B . 
 � . @o@
function exponentialspectrum,selectedby regularly sampling
the interval

�\$ � % . @ �'S # . ) min
� �

. After augmentationof
the spectrumwith a unit sample,convolution with the input
function � %D'D) � '

õ
��� � ? ó !UT eMV W was performed. Subsequent

augmentation with constant function (8) was followed by
application of theSVD andretentionof only thefirst five � R .
Thisentireprocessis outlinedin Figure3.

Wecanapproximatethecolumnsof theconvolvedspectrumû ü
(shown in Figure6) usingtheORCOBfunctions(shown in

Figure5) giving: Xû[� Xû�	 XC 
Y0 e (20)

wherethe ô Xô th elementof
0 e is � R PRe and

XC is a solutionofH 	 C 
O� @
.

Let thefunctions:�G PR %D'D) # Xô
� @ # . #3121313# XY � . # ' � @ # . #2131214# XA B .

(21)G ü PR %D'D) # Xô
� @ # . #3121313# XY � . # ' � @ # . #2131214# XA B .

(22)

represent the Xô th columns of
Xû

and
û ü

, respectively. We may
then find the maximum approximation error among all the
convolvedspectralfunctions as:

Y
powmax

� IKJML
PRTS
e[Z � Z\V V\V Z PQ ] � Y pow

G ü PR %('D) # �G PR %('�) � . 1 � � # (23)

a result which is entirely satisfactory. The G ü PR %('D) are plotted
versusthe

�G PR %('�) in Figure6.

Until this point, we have preserved theregular samplingof
the basisfunctions to allow us to easily convolve the rotated
orthogonalbasiswith the input function. At this juncture, we
maysampletheORCOBat theprojection sampletime points.
Element

'
of columnvector ô of thesampledORCOBmatrixû

is given by: G R %n'D) � XG R % � ü ) #� ü �^] � � �
õ
� � � ? # � � @ # . #213121(# XA`_ (24)
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Figure 6: The approximationof the convolved spectrumusing the
ORCOB(+) is shown versustheoriginal spectrum(solid). Only every
third spectralfunctionis shown for clarity.

The DRIP problem may now be reexpressedas one of
estimatingthe coefficients � R � of the

ÿ R for all regions, so
thattheTAC of eachregion mayberecovered:�� � %4'4) � Q

R�S �
�� R � G R %4'a) # ' � @ # . #2131214#�A B . 1 (25)

We mustnow specifyhow the
�� R � maybeestimatedgiven

theinconsistentprojectionmeasurements.

IV. PROBLEM SOLUTION

In order to solve the DRIP problem as linear system,we
mustconstruct a matrix which maps

0 �^2 Q 6a7 �
, containing

the � R � , to theprojectionbin measurements78 �>2 �cb 7 �
:

78 �/d�0 # (26)

wheree is thetotalnumberof angularprojections,and
G

is the
numberof binsperangularprojection.

The construction of
d �f2 �%b 7 Q 6

has beendescribed
in detail previously [5]. Briefly, this matrix servesto express
each projection bin measurement in terms of the fractional
contribution of each imaged region to that bin, multiplied
by the fractional contribution of eachbasisfunction to each
region:

Xg'hji %D'D) � 6
� S � k

�hji ø
Q
R�S � � R

� G R %D'D)l � . #</�#2131214# em � . #0/�#2131214# G 1
Thematrix

d
containsthegeometricweighting factorsk andthe

basisfunction valuesG arrangedin sucha way thattheproduct
in (26) is readily effected.

Whenfine pixelizations of the imagespaceareemployed,
eachpixel contributes to only a handful of bins within each



angular projection. Consequently,
d

is verysparselypopulated.
This is

n
a fortunatecharacteristic, sincedensestorageof this

matrixbecomesprohibitive for largeproblems.

Previous experience [5] has shown that an unweighted
least squaresestimatoris able to provide virtually unbiased,
highly efficient estimates

X0
at projection data noise levels

which are typical for dynamic SPECTstudies. This implies
that the statistical mismatch implicit in applying the least
squaresestimatorto Poissondatais not a significantsourceof
estimationerror.

Consequently, we choose to find the parameterestimate
X0

whichsolvestheconstrainedleastsquaresproblem:9;	 X0 
 � IKoqpr@sYt 78 B d�0 $
(27)u ý 0 �>2 Q 687 � � � R � ^ @ # (28)

where0 � % � ��� # � $ � #
131213# � Q � # � � $ #
13121
121314# � Q 6 ) 1 (29)

Since all of the elementsof
d

are non-negative, the
constraints (28)aresufficient to ensurethattherecoveredTACs
in (25)arenon-negativeatall time points.

We henceforth refer to this algorithm for the estimation
of

0
as the oblique-rotated convolved-orthogonal basis

reconstructionalgorithm (ORCOBRA).

V. NUMERICAL METHODS

Problem(27-28) constitutesa non-negative least squares
(NNLS) problem. As such,innumerablemethods exist for its
solution. An excellent review of thesealgorithms appearsin
[11].

We desireanalgorithm with thefollowing characteristics:

1. Utilization of sparse matrix storage for matrix
d

.
Algorithms which do not require input of the matrixd

, but only the products,
dL+

and
d � 8 , are especially

suitedto this application. This stemsfrom the fact thatd
is separableinto the element-by-element product of

two matriceswhich eachcontainmany identicalblocks
[12, 5].

2. Preservation of numerical precision. The algorithm
should notcalculatetheproduct

d � d
[11].

3. An iterative implementation, which refines a starting
estimateis desirablefor warm-starting of reconstructions
on higher resolution pixel grids based on coarse
preliminary reconstructions obtained on lower
resolution grids. We have shown previously how large
computationalsavings (

�
75% for 1024pixels) may be

obtainedin thisway [13].

We discussfour major approachesto the solution of the
NNLS problem.

A. Leastdistanceproblem
TheNNLS problemcanberecastasaleastdistanceproblem

(LDP). This is theapproachtakenby LawsonandHanson[14].
In preliminaryexperimentsusingthecodeprovidedin [14], we
found that the LDP-basedalgorithm performedpoorly when
appliedto large sparsesystems[13].

B. Quadratic program
Alternatively, problem NNLS can be reexpressedas a

quadratic program(QP)[11]v 	 X0 
d�+IKoqpr@s b8w 0 �Ex 0 �>y � 0 # (30)

with G ü ý 0 �>2 Q 6 �az ^ .10 ^�{ (31)

where x ��d � d # y � B�/ d � X8 $ (32)z �}| # { ��~ # . ��� Q 6 # (33)

where
� Q 6 is an identity matrix of dimensionequalto thatof

theparameter vector.

SinceproblemQP is a subproblemsolvedat eachiteration
of many constrained non-linear optimization algorithms;
efficient, well-testedandnumerically robustcode exists for its
solution.Theformationof thematrix

d � d
is undesirableasit

introducesnumericalerrors, soconventional QPmethods must
bemodified to obviatetheneedto calculatethis matrix. Gill et
al. describesuchanalgorithm, which is availableaspartof the
commercial LSSOLandNAG libraries [15, 11]. Unfortunately,
this implementationis notsuitablefor largesparsesystems.

Oneof themorepromisingQP-basedalgorithm testedsofar
is the block principal pivoting methodof Portugal et al. [16],
which is specificallyintendedfor largesparseNNLS problems,
andsolvesthe linearcomplementaryproblem of theQP. In its
original form, it doesnothavefacilitiesfor warm-starting using
an initial estimate,andcannot exploit the separable nature ofd

. Nevertheless,owing to the sparsityof
d � d

, which must
be stored, storagerequirements are reasonable, even when
ORCOBRAis appliedto large datasets.Computational burden
is perhapsan order of magnitude lower thanthat of the NAG
library’s densematrixQPalgorithm.

C. Richardsoniteration
Amongall methods investigated,thefirst-order Richardson

method[11, p. 276] appears to offer the best compromise
betweenspeedof convergence andmemoryrequirements. It
alsosatisfiesall of the desiredcharacteristicsspecifiedabove.
TheRichardsoniterationis givenby:X0 ? � A � X0 ? � � �BA �#� d � X8 B d X0 ? � � �BA

(34)

where
X0 ? � A

is thesolutionvectorat iteration
�

and
��! @

is a
parameteraffecting convergence.Theiterationconvergesto the
leastsquaressolutionunder theconditions:X0 ? e A �

range
	�d � 
 # @ E � E>/ �[� $ � (35)



where � � is the largest singular value of
d

. In a manner
analogousto that proposedby Cryer [17] we obtainanNNLS
solutionby modifying theiterationin 34:�� ? � A� � I�J[L @ # X0 ? �o� ��A �#� d � X8 B d X0 ? � � �BA �� � . #</�#�13121�#35 Y

(36)

where
�� � is the

�
th elementof

X0
andthe operator

%:) � extracts
the

�
th elementof a vectorargument. To avoid the difficulty

of finding thelargestsingularvalueof
d

, we initially set
�

to a
largenumberandreduceit by half until adecreasein successive
residualsis achieved. Theinitial valueof

�
should besethigh

enoughsothatthealgorithm decreases
�

at thefirst iteration.A
flowchart of this algorithm appearsin Figure7.���j� �\� ��� � �P����%�9�M���=���[��� �
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Figure7: FlowchartillustratingtheRichardsonNNLS algorithm.

D. General non-linear techniques
A further alternative is to solve the NNLS problem via a

general non-linear iterative optimization scheme,such as a
conjugategradient methodwith parameter boundconstraints.
An advantageof this classof methods is that it allows a more
flexible selectionof maximum likelihoodestimationcriterion.

We have not yet evaluatedthesemethods for application to the
ORCOBRANNLS problem.

In the experimentswhich follow, we employ the modified
first-order Richardsoniteration specifiedin (36). We choose
to store

d
asa sparsematrix, ratherthanrecalculating it every

iteration,asthis provesfasterfor this sizedatasetconsidering
theamount of RAM memory available.

VI . ALGORITHM EVALUATION

A. Phantom imaginggeometryandkinetics
We evaluatethe algorithm usinga phantom dataset,whose

imaging and sourcegeometries,Poissoncount statistics,and
tracer kinetics are modeled on an actual clinical myocardial
SPECTdataset. The latter is described in detail in [7]. We
choose to model our phantom after this datasetas we wish,
in futurework, to applyORCOBRAto similar datasets.In so
doing, we will beableto compare theresultsobtainedto those
yieldedby othermethodswhich have beenusedto reconstruct
thesedata[7, 5].

A myocardial defectnotpresentin thepatientdatahasbeen
included so we may determine the detectabilityof the defect.
Theregionsof thephantom datasetaredelineatedin Figure8,
while thekineticsareshown in Figure9.
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Figure8: The phantomdatasetis basedon the sourceand imaging
geometryof theclinical dynamicSPECTdata.

B. Reconstruction geometryandtemporal sampling
We employ ORCOBRA to reconstruct the phantom image

sequence on the non-uniform resolution gridswhich appearin
Figures10, 11 and12. Thesegrids differ with respectto the
maximum resolutionof the sub-grid overlying the heart, the
respective maximum resolutions being Õ @ ø Õ @ , / @ ø_/ @ and.(� ø .a�

pixels. A
.a� ø .(�

grid overlies theliver, andan Ö ø Ö
grid, thebackground, in all grids.

Design of such a grid so that areasof high activity and
interestsuchas the myocardium, left ventricular (LV) blood
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Figure 9: Phantomregion kinetics appearwith symbols denoting
sampletimes.For thisset,eachtimepointcorrespondsto anindividual
camerarotation. Pointsmarked with a ’+’ correspondto the sample
timesof thosecamerarotationsincludedin thedatasinogram×Ø .

pool and liver receive finer discretizationrequiresonly crude
localization of theseareaswithin image space. A standard
staticreconstructionalgorithm maybeusedfor this purpose,or
ORCOBRAmaybeappliedto a low resolutionuniform grid.

Figure 10: The coarsestgrid used in theseexperimentsoffers a
maximumresolutionof ÙÛÚ�Ü±ÙÛÚ pixels. This grid is referredto asthe
16-16-8grid, andcontains136pixels.

Owing to memory constraints,we include in our measured
sinogram 78 , only thefirst 23of the45single-rotationsinograms
acquiredby of thecamera.This time point selectionis shown
in Figure9.

All of the120generatedprojectionsperrotationareutilized
in thereconstruction.

A summaryof the imaging parameters appearsin Table1,
while parametersfor theRichardsonNNLS algorithmarelisted
in Table2.

C. Performancemetric
To evaluategoodness-of-fitbetweentrue TACs and TACs

recoveredby thealgorithm, we baseour metricon
Y

pow, which
we defined in (19).

Figure 11: The 20-16-8 grid possesses a maximum resolution ofÝßÞ Ü ÝßÞ
pixels andcontains184 pixels. The finestresolutionregion

is extendedin this grid so that its width spansan integral numberofà Ü à -sizepixels.

Figure12: With a maximumresolutionof á Þ ÜDá Þ pixels,the40-16-8
grid is the finest upon which we reconstructthe dynamic image
sequence in theseexperiments.Thisgrid contains388pixels.

Table1
Imagingparametervalues.

Parameter Value

Imaging time(minutes) 15
Timesamplepointsin set 45
Timesamplepoints
selected( A ) 23
Rotationsin set 45
Rotationsselected(

�
) 23

Angularprojections
in setperrotation 120
Bins per
angular projection (

G
) 64

Table2
RichardsonNNLS algorithmparametervalues

Parameter Value� e 10â . @ �'ã



Let *¢ä #=å � ]¸æ #�ç #�è #�é #�êë_ representtheregionsdefined
in Figure8. We definethe true TAC of region *Kä as ì5ä %4'a) ,
and its estimate,obtained for noise realization � by

�ì5íä %4'a) .
We may then measure the goodness-of-fit betweentrue and
reconstructedTACs over N noise-realizations,at a particular
noiselevel, for a particular pixel grid configurationas:

îY ä
pow

� .N�ïí S � Y pow ì ä %4'() # .* *�ä * � sÛð
ñ �� � %('() # (37)

where
* *aä * representsthenumber of pixels in region å .

D. Phantom datareconstructionresults
Tables 3, 4, and 5 give values for

îY ä
pow at various

noise-levels, for the myocardium, myocardial defectandliver,
respectively. For testswhere noise is present,resultsgiven
are averaged over N � � @

noise realizations. Between-trial
standarddeviations are also tabulated. Results for the LV
blood pool and background are omitted for brevity, since
theseregions are usually of less interestin the diagnosis of
myocardialperfusiondefects.

Total count values for the simulationsare given for the
full 45 rotation datasets. Owing to the reduced rotation
samplingschemeemployed,themeasuredsinogram78 to which
ORCOBRAis appliedcontains approximately266,000counts.
This is lessthan53%of the total eventsrecordedfor theslice
of patientdataonwhich thephantom wasmodeled.

Figure14 shows themeanTACsrecoveredfor all phantom
regions at this noise level. TheseTACs were obtained by
averaging the pixel TACs within each region *Kä in the
reconstructeddynamic image sequence. Several samplesof
this sequenceappearin Figure 13. Intraregion variability is
quantified in termsof pixel TAC standarddeviation from the
mean,asshown in Figure14.

Figure 15 illustratesan excerpt of the dynamic sequence
obtained when ORCOBRA is applied to a single realization
of a phantom sinogram. The corresponding TACs appear in
Figure 16. It is clear that ‘cross-talk’ betweenthe liver and
background leadstounderestimationof theliverTACamplitude
andoverestimationof backgroundactivity.

All computationwasperformedon a PentiumIII 850MHz
processor equipped with 512MB of RAM and 1GB of hard
disk swap space. Mean computation times for the various
simulationsappear in Table6.

VI I. DISCUSSION

We have shown how non-negative basisfunctions, which
allow a spectralrepresentationof single compartment tracer
kinetics using non-negative coefficients, may be derived
from a chosenexponential spectrum via the SVD and an
oblique rotation. Theadditionto theexponentialspectrum and
convolved exponentialspectrum of functions which allow for
modeling of blood pool andregions of constantactivity have
not beenobserved to increasethe dimension of the resulting

Table3
Goodness-of-fitof therecoverednormalmyocardialTACsis

evaluatedin termsof themetric òóõô
pow, for variousnoise-levelsand

grid resolutions.Valuesaregiven ö betweentrial standarddeviations.
Thenumber of noiserealizations÷ appearsin thelastcolumn.

Counts Pixels NoiseøÛàÛà Ù à á Ù ø Ú realizationsù ÙYú øÛû ø ú ûÛÝ ø ú�ÙÛÙ 1ü Ü�Ù ÞOý ÙYú�þ Þ ö Þ ú á ø ú\þ ø ö Þ ú á ø ú á'þ`ö Þ ú ø 30

Table4
Valuesof òó ô

pow obtainedin thecomparisonof trueandrecovered
myocardial defectTACs.

Counts Pixels NoiseøÛàÛà Ù à á Ù ø Ú realizationsù ÙYú á'Ú Ý ú à Ú áÿú àßÞ 1ü Ü�Ù Þ ý Ý ú û áaö ÙYú Þ ø ú àÛÝ ö ÙYú�þ ü ú üÛà ö ø ú û 30

Table5
In termsof thethemetric òó ô

pow, theTAC for theliver is themore
accuratelyrecoveredthantheTACsof otherregions.

Counts Pixels NoiseøÛàÛà Ù à á Ù ø Ú realizationsù ÙYú Ý Ú Þ ú\ÚÛþ ÙYú ÝÛø 1ü Ü�Ù Þ ý ÙYú á'Ù`ö Þ ú\Ù Þ ú àßÞ ö Þ ú�Ù ÙYú øÛû ö Þ ú�Ù 30

Table6
Computational statisticsderivedfrom theexperimentalapplicationof
ORCOBRAto noise-freephantom data.Thesecondcolumngivesthe
time neededto calculateandstorethesystemmatrix

�
for eachgrid

specifiedin columnone.Columnthreecontainsthenumberof
Richardsoniterationsneededto find thesolutionwhich attains��� Ù Þ�� ý , while thefourth columngivesthetotal time to performall

iterations.Thetotalnumberof floatingpoint operations(in gigaflops)
for all Richardsoniterationsappearsin thefinal column.

#
�

prep. Iterations Optim. Optim.
pixels (min) time(min) GflopsøÛàÛà ÙÛÚYú�þ øßÞ þ à ÚYú�Ù ÝÛà ú øÙ à á áÿú�þ ÝÛø Ú á à ú\þ Ù û ú üÙ ø Ú ø ú�þ ø Ù Þ üÛü ú Ý ÝßÞ ú Ý

basisset. Approximation is achieved to within a meansquare
errorof

. 1 � � , andconsequentlyconstitutesaverysmallsource
of errorin thedynamicreconstructionproblem.

Scrutiny of both the recovered TACs in Figure 14 and
the reconstructed dynamic sequence in Figure 13 reveals
that the myocardial defect is easily discernible from healthy
myocardium. Limited resolution, andpossiblythe useof the
non-uniform resolutiongrid, leadsto ‘bleeding’ of regions so
that the normal myocardialTAC is underestimatedwhile that



Table7
Computational statisticsderivedfrom theexperimentalapplicationof
ORCOBRAto the

ü ÜKÙ Þ'ý countphantomdata.Thequantitieslisted
aredescribedin thecaptionof Table6. Whereapplicable, mean

valuesover 30 testsaregiven ö onestandarddeviation.

#
�

prep. Iterations Optim. Optim.
pixels (min) time(min) GflopsøÛàYà ÙYÚYú\Ù Ù Þ'û ú û ö ÙÛþYú à ø ÙYú�Ú ö ÙÛÙYú Þ þYú\þ ö ÙYú àÙ à á ü ú Ý àÛû ú Þ ö Ù à ú\Ù ÙÛþYú�þ ö Ù Þ ú�Ú ÚYú ü ö ÙYú øÙ ø Ú á ú Ý à ÙYú Ý ö Ù ü ú á Ùßáÿú ü ö Ý ú û ü ú á8ö ÙYú Þ
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Figure13: Snapshotsof the reconstructeddynamic sequence� rec � 	�
 ,
which results from the application of ORCOBRA to a dataset
containing

Ý ú�ÚÛÚ Ü(Ù Þ ý total counts, a selectedsubsetof a full 45
rotation, 120 projectionset containing

ü Ü Ù Þ[ý counts. The source
distribution was reconstructed on the 40-16-8grid shown in Figure
12. Thesourceintensitieswhich appearabove aretheaverageof those
obtainedover 30 noise realizations. The myocardial defect is well
differentiatedfrom thesurrounding healthytissue.

of the lessintenseLV blood pool is overestimated.Similarly,
the liver TAC is underestimated,andits activity clearlybleeds
into the surrounding background, leadingto overestimatesof
theactivity in thelatter. However, meansquareerrorsfor these
clinically relevant regions are below

���
, even though only

half the realistic number of photon countsfor a single slice��� m Tc-teboroxime myocardial study are utilized. Figures15
and16show resultsanalogousto thosewhichappearin Figures
13and14,for thecasewhereORCOBRAis appliedto a single
noiserealization.

Table 7 indicatesthat the highest resolution40-16-8 grid,
which is illustrated in Figure 12, is reconstructed in a mean
time of 48 minuteson a mid-speed PentiumIII CPU. This
includes the16 minutesneededto calculateandstore

d
, which

may then be usedin multiple subsequent applications of the
algorithm to datasetsfor which the projection geometry and

2 4 6
0

20

40

60

80
TAC A: Myocardium

2 4 6
0

10

20

30
TAC B: Defect

2 4 6
0

50

100

150
TAC C: Liver

2 4 6
−20

0

20

40
TAC D: LV blood pool

2 4 6
−10

0

10

20
TAC E: Background

time (minutes)

True                  
Recovered ± std. dev

Figure14: TACs obtainedby finding the meanTAC of eachregion
of the full dynamic reconstructed sequence, several time samples
of which appear in Figure 13. Standarddeviations plotted relateto
intraregion variation of individual pixel TACs. Although ‘bleeding’
of regions leadsto the overestimationof the activity in less intense
regions at the expenseof underestimatingregions of high activity
suchas the healthymyocardiumand liver, recoveredTAC quality is
sufficient to allow isolationof themyocardialdefect.
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Figure15: Snapshotsof the reconstructeddynamic sequence� rec � 	�
 ,
which resultsfrom theapplicationof ORCOBRAto asinglesinogram
containing

Ý ú�ÚÛÚ�Ü�Ù Þ ý total counts.CorrespondingTACsareshown in
Figure16.

general kinetic modelareappropriate. ThechosenRichardson
termination toleranceof â � . @ �ÿã

provedoverly stringent and
execution timesmaybehalvedwithout materiallyaffecting the
quality of the reconstruction by selectinga more reasonable
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Figure 16: Mean TACs for each region recovered from a single
sinogramrealizationat
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valuefor this parameter, suchas â � . @ �'S
. Comparing Table

6 (application to noisy-free data) and Table 7 (application
to noisy data)we seethat the number of iterationsrequired
to reach the termination criterion in the noise-free case is
greater. This is probably due to the greatersmoothnessand
convexity of the cost function surfacein the noise-freecase,
which allows a bettersolutionto befound, albeitaftera longer
searchprocess.For datasetsof this size,computationtimesare
likely to be significantlyimproved by increasingthe available
RAM memory to 1.5GB,asthis will eliminatethe delaysdue
to memory swappingbetweenRAM andharddisk swapspace
experiencedhere.

The 503 minutes required to find the oblique-rotatedbasis
is prohibitive in clinical applications, especially since the
ORCOBis dependenton thebloodinput function andmustbe
recalculatedfor eachstudy. This problem may be overcome
by applyingthe SVD to the original exponentialspectrum(4)
ratherthanthe convolved spectrum. An affine transformation
may then be found that producesa non-negative basisset in
exactly the samemanner describedin Section III-C. This
set is appropriate for a wide range of studies,as it may be
convolvedwith theinput function for aparticularstudyto form
a TAC basis. Such a solution for the exponential spectrum
chosenin Section III -D was found in 42 minutes, and had
similar approximating performance to the ORCOB used in
the simulations. However, modeling of constantTAC offset
function (8) is understandably poor, sincethis functioncannot
bemodeled in theunconvolved spectrumwithout knowledgeof
the input function. Accurateapproximation of suchfunctions
requiresaugmentationof theORCOBwith aconstantfunction.
This hasthedisadvantageof increasingthesizeof the inverse
problemby a factorof

	 Y � . 
 � Y .

A secondcharacteristic of the algorithm which detracts
from its clinical utility is the requirementthata good estimate

of theblood input function beavailable.Accuratemeasurement
of this function via arterial blood sampling is logistically
difficult and significantly increasesthe cost and complexity
of ECT studies. An alternative is to estimatethe blood input
function from theactivity within theleft ventricularbloodpool.
This is difficult in the caseof the DRIP problem, since the
activity within this region cannot be obtained from an image
series. Reutteret al. have shown how a basisof 16 B-splines
areableto approximatewith reasonableaccuracy the regional
TACsof myocardialstudies[12]. While general approximating
functions suchasB-spinesdo not enforce consistency with a
particular kinetic model, they appearto be adequate for the
solution of the DRIP problem when the number of regional
TACs to be estimated(and hence the size of the inverse
problem) is small. In caseswherethe application of standard
(static) reconstruction algorithms to inconsistentprojection
data is sufficient to allow the image domain to be crudely
segmented into bulk regions (myocardium, liver, LV blood
poolandbackground), reasonableestimatesfor thebloodinput
function might beobtaineddirectly from projectionsusingthe
methodof Reutteret al. ORCOBRA could then be invoked
to producehigherresolution reconstructions directly from the
projection data.Theconsistency betweenthemeanTAC of the
LV blood pool obtainedby ORCOBRA,andtheinput function
estimatemightserveasameasureof theaccuracy of thelatter.

Futurework will involve the development of second-order
iterative methods in order to increasethe convergence rate
of ORCOBRA. The algorithm will also be further evaluated
through its application to the clinical data upon which the
phantomwasmodeled.
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